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In [l 1 we considered plane and axisymmetric magnetohydrodynamic flows 
of an ideal gas in the presence of a magnetic field parallel to the flow 
velocity. In that paper, it was shown that two regions of hyperbolic flows 
exist. In the supersonic hyperbolic region the flow is qualitatively 
similar to supersonic flow of an ordinary gas. In the subsonic hyperbolic 
region shock waves extend upstream from the body, so that the flow 
picture is like that of an ordinary gas flow directed in the opposite 
direction. 

We shall show that within the limits of accuracy of linearized theory 
this fact also holds for three-dimensional flows, and that extending UP- 

stream will be not only shock waves but also vortex sheets. 

The linearized equations of magneto-gasdynamics for an ideal gas with 
infinite electrical conductivity in a magnetic field parallel to the 
velocity have the following form, after the magnetic field is eliminated 

[ll: 

Here us, vY and vZ are the perturbation velocities, Vo the velocity 
of the unperturbed flow, Va the Alfven speed, H,, the unperturbed magnetic 
field, and p. the density of the unperturbed flow. 

The perturbed magnetic field is connected to the perturbation velo- 
cities by the relation 
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Transforming 

M2--NZ 
?‘.l. = M* _ N2 (* _ M”) Z‘x- vy s--v - Y ’ 

z = -x-, y = Y-P z = z- 

we reduce system (1) into the form 

av - 
pz~&&-___&=O, 

all,- aV - 
y -0 -- I 

xj= - ax- 
psz (N2 - M2) (1 - M2) 

M2-N2 (l-M.3 

vz = - v,-, 

(3) 

av - 2 - avz- -0 
a2- ax- (4) 

Evidently @* is positive and the equation is hyperbolic for 

N/d (1 -. N*) < M < min(N, 1) and for M > max (1, N). 

The first of these regions (quasihyperbolic [ 1 1 ) represents the more 
interesting case, where, as mentioned previously, shock waves extend up- 

stream. 

The system (4) differs from the corresponding system of linear equa- 
tions for ordinary gasdynamics only in the absence of the third equation 
of irrotationality. 

From the last two equations of system (2) we obtain 

The function F(y, L) is in general non-zero. However, if at infinity 
F(y, Z) I 0, then across weak compression shocks of arbitrary form the 
function F remains zero. This follows from the fact that the relations 
satisfied across weak shocks coincide with those for characteristics. BY 
means of transformation (3). these relations reduce to the usual ones of 
supersonic aerodynamics. Since in ordinary gasdynamics the flow remains 
irrotational across weak shocks to an accuracy of the cube of the shock 
strength. the same remains true in the case under consideration, i.e. 

F(Y. Z) s 0. The function F may differ from zero only in vortex sheets. 

Since on the body II - = - vy, vx- = -vZ, and, moreover, in the sub- 
Y 

sonic hyperbolic region shock waves leave the side of increasing Z-, then 
evidently system (4) and boundary conditions describe an ordinary gas 
flow near the body in the opposite direction, i.e. V-e = - Ve. 

If we take the solution of the corresponding ordinary gas problem with 
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reverse flow to be the solution of the magnetohydrodynamics problem in 
question, then the vortex sheet generated by the wing in ordinary gas 
flow will extend upstream in this problem (Figure). 

In the supersonic hyperbolic region the flow picture obtained is 

qualitatively similar to the flow in ordi- 
nary aerodynamics. To reduce system (1) to 
the form (4). it suffices here to replace 

us by vX- according to (31, leaving the re- 
maining variables unchanged. 

Let us observe some properties of three- 
dimensional flows, which obtain in both 
subsonic and supersonic flows. 

As shown above, in both cases the solu- 
tion of the magnetohydrodynamic problem may 
be reduced to the solution of the corre- 

sponding problem in ordinary aerodynamics. Within the limits of linear- 
ized theory. the latter solution is irrotational.. 

However, it is evident that in the resulting flow, the y- and z-com- 
ponents of the vorticity and current will be non-zero. In magnetohydro- 
dynamic shock waves the tangential components of the field and velocity 
are discontinuous. Consequently, a shock is itself a vortex sheet and a 
current sheet. In three-dimensional flows the shock strength changes 
from point to point; hence, the current can flow either into or out of 
the shock. 

On the body surface the velocity and magnetic field undergo a 
tangential discontinuity. In ordinary aerodynamics the difference in the 
circulation intensity between two adjacent sections of the wing equals 
the intensity of the portion of the trailing vortex sheet between the 
two sections considered. From the solution constructed above it is seen 
that i’n the magnetohydrodynamic case the vortic.itY and current from the 
boundary layer are not only in the vortex sheet but also throughout the 
flow, so that the components of the current and vorticity normal to the 
wing surface are not zero. 

Therefore. the currents in the shock, the boundary layer, the vortex 
sheet and the entire flow form a “single energy system.” 

We observe that the solution for the quasihyperbolic case constructed 
above, with a vortex sheet extending upstream, cannot be fully justified 
within the limits of ideal fluid theory. Nevertheless, it has been 
established in a series of papers that for sub-Alfven speeds in fluids 
of infinite conductivity, the viscous wake extends upstream; this fact 
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serves as a justification of the flow picture proposed here, to a certain 
extent. 

The author expresses his gratitude to A.A. Dorodnitsin and V.V. Sychev 

for examining the results of this work. 
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